
Using Maude and Its Strategies for Defining a

Framework for Analyzing Eden Semantics

Mercedes Hidalgo-Herreroa Alberto Verdejob

Yolanda Ortega-Mallénb

a Departamento de Didáctica de las Matemáticas, Universidad Complutense de Madrid

b Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid

Abstract

Eden is a parallel extension of the functional language Haskell. On behalf of parallelism Eden overrides
Haskell’s pure lazy approach, combining a non-strict functional application with eager process creation
and eager communication. We desire to investigate alternative semantics for Eden in order to analyze
the consequences of some of the decisions adopted during the language design. In this paper we show
how to implement in Maude the operational semantics of Eden in such a way that semantic rules can be
modified easily. Moreover, other semantic features can be implemented by means of parameterized modules
that allow to instantiate in different ways several parameters of the semantics but without modifying the
semantic rules.

Keywords: Operational semantics, parallel functional languages, Eden, rewriting logic, Maude, rewrite
strategies.

1 Introduction

It is well-known that functional languages offer great possibilities for parallel pro-

gramming [10], ranging from a completely implicit parallelism —for instance an

automatic parallelization— to an explicit parallelism where the programmer dis-

tributes the computation among a set of communicating processes that even may

be located by the programmer himself at designated processors. The parallel lan-

guage Eden lies more closely to this latter approach, extending Haskell [15] with

coordination features for creating processes with stream-based communication.

Haskell is a lazy language, i.e. it adopts normal order evaluation, avoiding re-

peated computations by sharing reductions. The lazy approach restricts the ex-

ploitation of parallelism because expressions are evaluated only under demand.

Therefore, Eden overrides the pure lazy approach, combining a non-strict functional

1 Research supported by MCyT Spanish project MIDAS (TIC200301000).

Electronic Notes in Theoretical Computer Science 174 (2007) 119–137

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.02.051

http://www.elsevier.com/locate/entcs

application with eager process creation and eager evaluation of communication val-

ues. This may produce speculative computation, i.e. the calculation of results that

may never be used. The amount of speculative computation produced during the

evaluation of an Eden program is variable, depending on the number of processors,

the speed of basic operations, etc. This interplay between laziness and eagerness is

precisely established by Eden’s operational semantics [6,11]. Moreover, this seman-

tics defines two extreme degrees of speculative computation: minimal and maximal.

Although there exists a stable implementation of Eden [8,17] on top of the

Glasgow Haskell Compiler (GHC) [4], we desire to investigate alternative semantics

for Eden in order to analyze the consequences of some of the decisions adopted

during the language design. For this purpose, it is extremely useful to have a

framework where Eden’s operational semantics can be easily programmed and that

provides mechanisms to reflect with small effort changes in the semantics. Rewriting

logic [14] and Maude [3] are excellent candidates for this aim. First, Eden’s syntax

can be represented literally. Second, Eden’s operational semantics rules can be

represented in Maude quite literally in most cases, so keeping the representation

distance as short as possible. Third, since Maude specifications are executable, we

directly get an implementation of Eden where program examples can be executed

and analyzed. Finally, a recently proposed strategy language [13] for Maude can be

used to control in every desired way the application of semantic rules.

In this paper we show how to implement in Maude the operational semantics

of Eden in such a way that two main objectives are possible: (1) the semantic

rules can be modified in an easy manner so that in a near future we can investi-

gate with different possibilities, and (2) several measures —parallelism, speculative

computation, communications, etc.— can be taken by changing some parameters of

the semantics (which is defined in a parameterized module) without modifying the

semantic rules.

From the point of view of Eden, this is the first step towards a framework

where Eden expressions can be evaluated according to different semantics in order

to be compared and analyzed. From the point of view of the implementation of

operational semantics in Maude, this work constitutes another step in a continued

effort to represent semantics for more complex languages. The simplest concurrent

language we have considered is Milner’s CCS in [18], that does not require any

strategies. This is not the case with Cardelli and Gordon’s Ambient Calculus that

we have tackled in [16]. However, the use of strategies in the latter solves problems

different from the ones we consider in this paper, where we take into account that

Eden’s semantics inherently depends upon an order of application of the rules, thus

exploiting the strategy language expressiveness.

The rest of the paper is organized as follows. First we present a brief introduction

to Maude; for a complete treatment we refer the reader to the Maude manual

[3]. Section 3 gives an overview of Eden and implements its kernel syntax, while

Section 4 is devoted to the operational semantics and its implementation in Maude.

In Section 5 we extend our framework in order to be able to obtain measures from

the computations. The last section presents our conclusions and outlines future

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137120

work.

2 Visiting Maude

In Maude the state of a system is formally specified as an algebraic data type by

means of an equational specification. Maude uses a very expressive version of equa-

tional logic, namely membership equational logic [2]. In this kind of specifications

we can define new types (by means of the keyword sort(s)); subtype relations be-

tween types (subsort); operators (op) for building values of these types, giving the

types of their arguments and result, and which may have attributes as being asso-

ciative (assoc) or commutative (comm), for example; equations (eq) that identify

terms built with these operators; and memberships (mb) t : s stating that the term

t has sort s. Both equations and memberships can be conditional. Conditions are

formed by a conjunction (written /\) of equations and memberships. Equations

are assumed to be confluent and terminating, that is, we can use the equations

from left to right to reduce a term t to a unique (modulo the operator attributes as

associativity, commutativity, and identity) canonical form t′ that is equivalent to t,

i.e. they represent the same value.

The dynamic behavior of a system is specified by rewrite rules of the form

t −→ t′ if (
∧

i

ui = vi) ∧ (
∧

j

wj : sj) ∧ (
∧

k

pk −→ qk)

that describe the local, concurrent transitions of the system. That is, when part of a

system matches the pattern t and the conditions are fulfilled, it can be transformed

into the corresponding instance of the pattern t′.

Maude modules can be parameterized with one or more parameters, each of

which is expressed by means of one theory that defines the interface of the module,

that is, the structure and properties required of an actual parameter.

Rewrite rules need be neither confluent nor terminating. This theoretical gen-

erality requires some control when the specifications become executable, because it

must be ensured that the rewriting process does not go in undesired directions. We

have defined a strategy language for Maude that can be used to control how rules

are applied to rewrite a term [13]. The simplest strategies are the constants idle,

which always succeeds by doing nothing, and fail, which always fails. The basic

strategies consist of the application of a rule (identified by the corresponding rule

label) to a given term, and with the possibility of providing a substitution for the

variables in the rule. In this case a rule is applied anywhere in the term where it

matches satisfying its condition. When the rule being applied is a conditional rule

with rewrites in the conditions, the strategy language allows to control by means

of search expressions how the rewrite conditions are solved. An operation top to

restrict the application of a rule just to the top of the term is also provided. Ba-

sic strategies are then combined so that strategies are applied to execution paths.

Some strategy combinators are the typical regular expression constructions: con-

catenation (;), union (|), and iteration (* for 0 or more iterations, + for 1 or more,

and ! for a “repeat until the end” iteration). Another strategy combinator is a

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 121

typical if-then-else, but generalized so that the first argument is also a strategy.

The language provides a (x)matchrew combinator that allows a term to be split in

subterms, and specifies how these subterms have to be rewritten.

3 A quick excursion to Eden

Eden [11] extends the non-strict functional language Haskell with a set of coordi-

nation features to control parallel evaluation of processes. Coordination in Eden is

based on two principal concepts: explicit definition of processes and implicit stream-

based communication, i.e. there are not communication primitives such as send and

receive. As well as there is a distinction between function definition and function

application, Eden includes process abstractions, i.e. abstract schemes for process

behavior, and process instantiations for the actual creation of processes. Moreover,

nondeterminism is introduced in Eden by means of a predefined process abstrac-

tion which is used to instantiate nondeterministic processes that fairly merge several

input streams into a single output stream.

For the purpose of this paper we just concentrate on Eden’s essentials, which

are captured by the untyped λ-calculus whose abstract syntax is given next, where

x ∈ Var represents identifiers and E ∈ Exp represents expressions:

E ::= x identifier

| λx.E λ-abstraction

| E1E2 application

| E1#E2 process creation

| let {xi = Ei}n
i=1

in E local declaration

When evaluating the expression E1#E2 inside a process p, a new child process

q is created together with two communication channels. The child is fed with the

value of E2 via the input channel by its parent process p. Process q evaluates E1 E2

and returns the result (to its parent) via the output channel. The following diagram

illustrates this:

p E1#E2−→

p

�E1E2�
E2

q

The language is normalized to a restricted syntax where all subexpressions,

except for the body of λ-abstractions, are replaced by variables defined in let-

expressions. This guarantees that subexpressions are shared, and are evaluated

at most once. We also assume a general renaming of variables for avoiding name

clashes during expression evaluation.

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137122

For instance, the evaluation of the following expression

let x0 = x1#x1,
x1 = λx.x,
x2 = 1,
x3 = x4 x0,
x4 = x5 x2,
x5 = λy.(λz.z)

in x3

gives place to a process creation: the main process evaluates x3 while the child

computes the application x1 x1. In order to do that, the child process needs the

value of x1 twice:

(i) for obtaining the λ-abstraction: the definition is copied to the child’s heap,

and

(ii) for getting the argument: the parent communicates the value to the child.

By the end of the evaluation of the application, the resulting value is sent back to

the parent process.

3.1 Representation in Maude

We define in Maude the syntax of the kernel of Eden given above. We use sorts and

subsorts to represent the different syntactic categories and their relations. Having

different sorts allows us to concrete the patterns used in rewrite rules by using

(Maude) variables of the most appropriate sort. We have sorts for ordinary variables

(Std), for channels (Cha) and for the union of both sets (Var). We also use two sorts

for distinguishing between expressions that are in weak head normal form (Whnf)

and those that are not (NonWhnf). Both are Eden expressions (Exp).

sorts Std Cha Var Whnf NonWhnf Exp LetBind LetBinds .

subsorts Std Cha < Var < NonWhnf .

subsorts Whnf NonWhnf < Exp .

subsort LetBind < LetBinds .

We define constructors for building expressions. For each constructor, the most

concrete sort is used as the result sort; for example, a λ-expression _._ is a weak

head normal form, whereas an application __ (empty syntax) is not. Strings are

used as variable identifiers.

op s : String -> Std .

op c : String -> Cha .

op _._ : Std Exp -> Whnf .

op __ : Exp Exp -> NonWhnf .

op let_in_ : LetBinds Exp -> NonWhnf .

op _#_ : Exp Exp -> NonWhnf .

op _=_ : Std Exp -> LetBind .

op nil : -> LetBinds .

op __ : LetBinds LetBinds -> LetBinds .

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 123

4 Operational semantics

In this section we describe an operational semantics in the style of [1], which in turn

is based on Launchbury’s natural semantics for lazy evaluation [9].

It is our purpose just to describe the structure of the semantics and to present

some of the transition rules focusing on how they have been implemented in Maude,

but neither to explain nor to justify their definition. For a more detailed overview

of Eden’s semantics, the reader is referred to [11]; a version extended with streams

for communication, dynamic channels and nondeterminism can be found in [6].

Correctness proofs, examples and applications are gathered in [5].

4.1 A two-level transition system

A process is represented by a pair 〈p,H〉, where p is a process identifier and H

is the heap collecting the variable-to-expression bindings that model the closures

corresponding to the process evaluation state. Each binding is considered a potential

thread to be executed by the available processors, so that a label indicates the thread

state: x
α
�→ E, where α ::= I|A|B corresponds to Inactive (either not yet demanded

or already completely evaluated), Active (or demanded), and Blocked (demanded

but waiting for the value of another binding), respectively. Channel identifiers can

appear on either side of a binding: on the left-hand side they represent outports;

while on the right-hand side they denote inports.

In the following, we will use x, y, z ∈ Std for ordinary variables, c ∈ Chan for

channels, θ ∈ Var = Std ∪ Chan , W ∈ Whnf for weak head normal forms, and p

and q for process identifiers.

The model of evaluation is represented by a sequence of systems —a system is

a set of parallel processes— regulated by the transition rules. Some of the bindings

in a heap are executed in parallel, sharing the data of the corresponding process;

but bindings in different processes can only share information through process com-

munication. The semantics needs small-step transitions to model parallelism in a

synchronous way, in the sense that single reductions are local and independently

carried out at each process and then combined before proceeding to the next step.

The semantics reflects the distinction between the two sub-languages (computation

and coordination) that configure Eden, so that it consists of a two-level transition

system: the lower level handles local effects within processes, while the upper level

describes the effects global to the whole system, like process creation and data

communication.

4.2 Representing the transition system in Maude

A thread is built with a variable, a thread state (of sort TState), and an expression.

A heap is a set of threads: none represents the empty heap, a thread represents a

singleton heap, subsort Thread < Heap, and the union _+_ of heaps builds them.

The union constructor is declared to be associative, commutative, and with the

empty heap as the identity element; pattern matching will take place modulo these

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137124

properties. Finally, the process constructor has four arguments: a string corre-

sponding to the process identifier; a heap; and two counters: one represents the

number of children of this process and the other indicates the maximum number

used to build new variables (incremented when renamings are needed because of

the generation of new variables). There is also a union operator __ (with empty

syntax) for building systems.

sorts TState Thread Heap Process System .

subsort Thread < Heap .

subsort Process < System .

ops A I B : -> TState .

op _|-_->_ : Var TState Exp -> Thread .

op none : -> Heap .

op _+_ : Heap Heap -> Heap [assoc comm id: none] .

op <_,_,_,_> : String Heap Nat Nat -> Process .

op empty : -> System .

op __ : System System -> System [assoc comm id: empty] .

We have defined several auxiliary operations needed by the semantics: substi-

tution, renaming of variables in a heap, normalization, etc. They are defined struc-

turally by means of equations and using the owise (otherwise) Maude attribute.

For the complete Maude code we refer the reader to [7].

4.3 Local process evolution

Local transitions express the reduction of an active thread in the context of a single

process. This internal activity affects only the corresponding heap. The evaluation

of an expression terminates when it reaches a whnf value (W ∈ Whnf). Local

transitions take the form H : θ
A
�→ E −→ H ′, which is read as “the evaluation of

the active thread θ
A
�→ E transforms the heap H + {θ

A
�→ E} into H ′”. In Figure 1

we show the local rules expressing how lazy evaluation progresses under demand.

We avoid writing multiple similar transition rules by allowing a binding to appear

with several labels, corresponding to the different possibilities admitted by the rule.

Thus, x
IAB
�−→ E on the left-hand side of rule (demand), and x

AAB
�−→ E on the right-

hand side means that the thread corresponding to the closure x �→ E becomes active

in the case it was inactive, and remains active or blocked otherwise.

In Maude we represent the semantic rules as rewrite rules. There are several ways

of mapping inference systems into rewriting logic [12]. In the structural operational

semantics case, judgements typically have the form of some kind of transition P →
Q between states, so that it makes sense to map directly this transition relation

between states to a rewriting relation between terms representing the states. Thus,

an inference rule of the form
P1 → Q1 . . . Pn → Qn

P0 → Q0

becomes a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn.

In this way the semantic rules become (conditional) rewrite rules: the transition

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 125

H + {x
I
�→ W } : θ

A
�→ x −→ H + {x

I
�→ W , θ

A
�→ W } (value)

if E /∈ Whnf , H + {x
IAB
�−→ E} : θ

A
�→ x −→ H + {x

AAB
�−→ E, θ

B
�→ x} (demand)

H : x
A
�→ x −→ H + {x

B
�→ x} (blackhole)

if E /∈ Whnf , H + {x
IAB
�−→ E} : θ

A
�→ x y −→ H + {x

AAB
�−→ E, θ

B
�→ x y} (app-demand)

H + {x
I
�→ λz.E} : θ

A
�→ x y −→ H + {x

I
�→ λz.E, θ

A
�→ E[y/z]} (β-reduction)

H : θ
A
�→ let {xi = Ei} in x −→ H + {yi

I
�→ Eiσ}

n
i=1 + {θ

A
�→ σ(x)} (let)

where fresh(yi) (1 ≤ i ≤ n) and σ := [y1/x1, . . . , yn/xn]

Fig. 1. Local transition rules

in the conclusion becomes the main rewrite of the rule, and the transitions in the

premises become rewrite conditions [18].

The local transition rules (as those given in Figure 1) are translated quite lit-

erally. We introduce two new constructors for representing heaps. The first one,

:, is already used in the semantic rules in order to separate the leading thread

—that which is going to evolve— from the rest of the heap. The second one, _&_, is

used in the right-hand side of rewrite rules in order to separate the modified threads

from the unmodified ones because this separation will be useful later. Actually, the

rule (demand) puts together three transition rules, one for each possible state of

the thread consulted in the heap. The rewrite rule demand given below represents

the three semantic rules at the same time, by using a variable T of sort TState

and auxiliary operations for detecting if the thread is modified or not. Notice how

the variable NW of sort NonWhnf is used to ensure the condition E
∈ Whnf in the

semantic rule. The rule let also uses auxiliary operations to build the new heap on

the right. This rule rewrites a process instead of only a heap because, due to the

renaming, the fourth argument has to be incremented.

rl [value] : H + X |- I -> W : Theta |- A -> X

=> H + X |- I -> W & Theta |- A -> W .

rl [demand] : H + X |- T -> NW : Theta |- A -> X

=> H + nmd(X |- T -> NW) & md(X |- T -> NW) + Theta |- B -> X .

rl [blackhole] : H : X |- A -> X

=> H & X |- B -> X .

rl [app-demand] : H + X |- T -> NW : Theta |- A -> X Y

=> H + nmd(X |- T -> NW) & md(X |- T -> NW) + Theta |- B -> X Y .

rl [beta-reduction] : H + X |- I -> \ Z . E : Theta |- A -> X Y

=> H + X |- I -> \ Z . E & Theta |- A -> E [Y / Z] .

rl [let] : < p, H : Theta |- A -> let LBS in X, N, M >

=> < p, H & letBindsToHeap(Theta, LBS, X, newvars(p, M, numvars(LBS))),

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137126

{H(i,1) + H(i,2) : θi A
�→ Ei −→ H(i,1) + K(i,2)

s.t. H = H(i,1) + H(i,2) + {θi A
�→ Ei} and θi A

�→ Ei ∈ ET (S) ∩ H}n
i=1

H
par
−→S (∩n

i=1H
(i,1)) ∪ (∪n

i=1K
(i,2))

where n = |ET (S) ∩ H|

Fig. 2. (local parallel) rule

N, M + numvars(LBS) > .

4.4 Local parallelism

Local evolutions —corresponding to the local transition rules— are considered to

occur simultaneously, entwined in a parallel step. The rule given in Figure 2 ex-

presses the evolution of parallel threads inside a process, where ET (S) is the set of

active threads in the system S that are allowed to evolve. H(i,1) is the part of H

that remains unchanged during the application of the corresponding local rule, while

K(i,2) contains the bindings from H(i,2) that have been modified. It is guaranteed

that there is no interference among local transitions. There are several possibilities

for defining ET (S), depending on the number of available processors, the allowed

degree of speculative computation, the priority given to some threads, etc. Maude

modularity, by means of parameterized modules, is very useful to implement and

then compare different scheduling strategies, as we will see in Section 4.6.

The rule (local parallel) is quite “abstract.” First, it has a variable amount

of premises, depending on the number of threads returned by ET (S); and second,

it makes separations of the heaps distinguishing between modified and unmodified

threads. For its implementation, we have solved the second problem by modifying

the right-hand side of local rules with the _&_ operator. To deal with the first

problem we have devised several approaches; we show here the one which represents

the resolution of premises, and the calculation of intersections and unions in the

right-hand side of the conclusion step by step, by means of rewrite rules. We have

chosen this form because it is similar to its mathematical presentation, it simplifies

the strategies needed, and it is more efficient.

We consider the following three rewrite rules as the basic steps of an algorithm

that implements the (local parallel) rule. The rule extend adds to the process

three arguments: the first one is the set of variables associated with threads that

have to evolve (new variable VS, explained below), the second represents the (par-

tial) evaluation of the intersection of unmodified threads (initially the whole heap),

and the third represents the (partial) evaluation of the union of modified threads

(initially the empty heap). The rule parallel-step performs the main step of the

algorithm, by solving one premise each time. It is a conditional rewrite rule: the first

two conditions (which are matching equations) extract the thread corresponding to

the variable Theta from the heap H, and the third (rewrite) condition represents

the premise in (local parallel) corresponding to the variable Theta. This last con-

dition has to be solved by using one of the local transition rules. Notice that the

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 127

heap H is kept unmodified because it is used in the resolution of each premise, and

the variable Theta is removed from the set VS. Finally, the rule contract removes

the extra arguments from a process, and performs a final union of heaps.

rl [extend] : < p, H, N, M > => < p, H, VS, H, none, N, M > .

crl [parallel-step] : < p, H, Theta . VS, H’, K, N, M > =>

< p, H, VS, int(H’,H1), K + K1, N’, M’ >

if Theta |- T -> E := lookUp(Theta, H) /\ H1-2 := filter(Theta, H) /\

< p, H1-2 : Theta |- T -> E, N, M > => < p, H1 & K1, N’, M’ > .

rl [contract] : < p, H, mt, H’, K, N, M > => < p, H’ + K, N, M > .

The application of these three rules has to be controlled. First of all, the rule

extend is applied by providing the concrete value for variable VS, namely the vari-

ables in ET (S) ∩ P , where P is the process being rewritten and S is the whole

system 2 ; then, the rule parallel-step is applied as many times as possible, i.e.

once for each thread in ET (S)∩P ; and finally, the rule contract has to be applied.

The following strategy -par->, that receives as argument a set of variables, corre-

sponds to this concrete application of the rules. It represents the relation
par
−→S in

the semantics (defined in Figure 2).

sop -par-> : VarSet .

seq -par->(ActVS:VarSet) = extend[VS:VarSet <- ActVS:VarSet] ;

(parallel-step !) ; contract .

An alternative way of implementing the relation
par
−→S would put more control

in the strategy, making it to traverse the set of evolvable variables and applying a

local rule to each of these variables (by means of other strategies). Although in this

case the rule parallel-step would be simplified, the approach presented before

has proved to be more efficient by doing the rewrite rules more powerful, and by

simplifying the strategies.

4.5 Global system evolution

At an upper level we define global transitions between process systems represented

by sets of processes. A global transition takes the general form:

S
�

=⇒ {〈p,H ′
p〉}〈p,Hp〉∈S ∪ S′

where each heap Hp (associated to a process p in the system S) is transformed to

H ′
p, while new processes (in S′) may be created. The diamond
 is a place-holder

for the name of the rule.

4.5.1 Parallel

Now we consider the parallel evolution of processes within a system S:

(parallel)
{Hp

par
−→S H ′

p}〈p,Hp〉∈S

S
par
=⇒ {〈p,H ′

p〉}〈p,Hp〉∈S

This rule has a variable number of premises, one for each process in the system

S. Each premise makes the corresponding process to evolve exactly once through

2 This intersection is computed when the strategy -par-> is called from strategy =par=> bellow.

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137128

(S, 〈p,H + {θ
α
�→ x#y}〉)

pc
−→ (S, 〈p,H + {θ

B
�→ c1, c2

A
�→ y}〉,

〈q, η(nh(x,H)) + {c1
A
�→ η(x) z, z

B
�→ c2}〉)

if nf(x,H + {θ
α
�→ x#y}) = ∅

q, z, c1, c2 are fresh identifiers and substitution η replaces all variables by fresh ones

Fig. 3. (process creation) rule

the transition
par
−→S . We implement this rule by means of the strategy =par=>

that applies the strategy -par-> to each process in a system. This strategy is

recursive and it terminates when the rest of the system (represented by the variable

S:System below) is empty. The strategy =par=> receives as argument the variables

corresponding to the threads returned by the function ET applied to the whole

system. Strategy -par-> is called with the set of evolvable variables of process P,

calculated by function inters.

sop =par=> : VarSet .

seq =par=>(VS:VarSet) = if (match empty) then idle

else (matchrew P:Process S:System by

P:Process using -par->(inters(P:Process, VS:VarSet)),

S:System using =par=>(VS:VarSet)) fi .

4.5.2 Multi-step rules

After each process has internally evolved, the following tasks have to be done at the

system level: process creation, interprocess communication and state management

(thread unblocking and deactivation). In general, these tasks imply multiple single

steps, each involving at most two processes. Let S be a process system, and
 the

name of a rule (

= par), for each single-step rule S
�

−→ S′ we define a multi-step

rule S
�

=⇒ S′ satisfying: S
�

−→
∗

S′ and, there is no S′′ such that S′ �
−→ S′′. The

application of a single-step rule
 to some binding in some process may enable the

application of the same rule
 to other bindings —in the same or in other processes—

but it can never disable applications of rule
 which were enabled before the former

application.

Single-step rules are implemented in Maude as rewrite rules, while the relations
�

=⇒ are built by means of strategies. Afterwards, these relations are combined

through more strategies.

4.5.3 Process creation

The initial heap of a child process contains all the bindings that are needed for the

evaluation of the dependent variables in the process body; these are copied from

the parent to the child heap by the function nh (needed heap): nh(x,H) collects all

the bindings in H that are reachable from x. A renaming η with fresh variables

is applied to avoid name clashes. A process creation (see
pc
−→ rule in Figure 3) is

blocked if there is some dependency on values that have to be communicated. The

function nf (needed free) collects the dependencies derived from the free variables.

Let us consider again the expression given as example in Section 3. After the

application of the (let) local rule, the resulting heap is the one shown in the left-

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 129

hand side of the following picture; and the (process creation) rule generates the

structure in the right-hand side:

main (N. Children: 0)

main
A
�→ x3

x0

I
�→ x1#x1

x1

I
�→ \x.x

x2

I
�→ 1

x3

I
�→ x4 x0

x4

I
�→ x5 x2

x5

I
�→ \y.(\z.z)

=⇒

main (N. Children: 1)

main
B
�→ x3

x0

B
�→ c1

x1

I
�→ \x.x

x2

I
�→ 1

x3

A
�→ x4 x0

x4

I
�→ x5 x2

x5

I
�→ \y.(\z.z)

c0

A
�→ x1

p
1

(N. Children: 0)

x6

B
�→ c0

x8

I
�→ \x7.x7

c1

A
�→ x8 x6

where c7 is the inport of the child whereas c8 is the outport; both are internal

variables not defined by the programmer since communications in Eden are implicit.

The following rule implements in Maude the
pc
−→ rule. It uses auxiliary functions

to rename the heap copied into the child, and to build new variables and channels.

crl [pc] : < p, H + Theta |- T -> X # Y, N, M >

=> < p, H + Theta |- B -> c1 + c2 |- A -> Y,N + 1, M + 1 >

< q, H’ + c1 |- A -> (searchVar(X,VVL) Z) + Z |- B -> c2, 0, M’ >

if nf(X, H + Theta |- T -> X # Y) = none /\ q := childName(p, N) /\

c2 := c(newvar(p, M)) /\ c1 := c(newvar(q, 0)) /\

Z := s(newvar(q, 1)) /\ < H’,VVL,M’ > := renH(nh(X,H),q,2) .

When designing Eden there was great discussion about how to distribute com-

putation between a process and its children. In the one extreme the parent would

advance as much work as possible, so that every dependent variable of the instan-

tiation body should be bound to a whnf before creating the child process. But this

may lead to a poor parallelization, where a process has to do too much computa-

tion before delegating work to a helping process. In the other —we could say the

“laziest”— extreme the parent would pass on all the work to its offspring, so that

for a normalized expression x#y, the argument y would be evaluated by the parent,

while the body x as well as the application, x y, would be evaluated by the newborn

child. This may lead to repeated calculations, because certain subexpressions may

get evaluated independently by several children of the same parent. But this can

be easily avoided by the programmer, by forcing the evaluation in the parent of

these common subexpressions. The latter option has been adopted for Eden and

its actual implementation, and this has been reflected in the operational semantics

presented in [11]. In this regard, feasible combinations are gathered in Figure 4,

where EC (evaluation before copy) stands for the option of evaluating all the bind-

ings before being copied to the initial heap of the newly created process (or the

consumer in case of a communication); IC (instantiation copy) represents the copy

of bindings from one process to another corresponding to process instantiations; and

BIE (body instantiation evaluation) comprises the alternatives for the evaluation of

an instantiation body: either by the parent process, or by the child.

We can represent the different approaches in our semantics just by modifying the

equational definition of the function nf. Each definition is specified in a different

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137130

EC IC BIE

1 yes yes parent

2 yes no parent

3 yes yes child

4 yes no child

5 no yes child

6 no no child

7 no yes parent

8 no no parent

Fig. 4. Evaluation alternatives for defining nf

(S, 〈p,Hp + {c
α
�→ W }〉, 〈q,Hq + {θ

B
�→ c}〉)

com
−→

(S, 〈p,Hp〉, 〈q,Hq + {θ
A
�→ η(W)η(nh(W ,Hp))+}〉)

if nf(W ,Hp) = ∅ and η introduces fresh names for all variables.

Fig. 5. (process communication) rule

module that then is used to instantiate the parameterized module defining the

semantics, which has as a parameter a theory requiring a function nf.

The relation
pc

=⇒ is implemented in Maude as the following strategy, that iterates

the application of the rule pc as many times as possible:

sop =pc=> .

seq =pc=> = pc ! .

4.5.4 Communication

The rule for value communication between processes is given in Figure 5. When the

value to be communicated corresponds to an abstraction, it is mandatory to copy

—from the producer’s heap to the consumer’s heap— all the bindings needed for

the evaluation of the dependent variables in the abstraction. Again, this copy can

only take place if the abstraction does not depend on pending communications (the

discussion corresponding to the two first columns in Figure 4 can also be applied

in this case), a renaming substitution (η) is applied to the transferred heap, and

bound variables are replaced by fresh variables.

Although a communication may enable additional ones, this never leads to an

infinite number of communications (in one system step). Besides, the order of

communications is not relevant, because variables that are already bound to values

are not affected by communications. Hence, the image of the corresponding multi-

step rule
com
=⇒, which carries out every possible communication, is well defined.

The rule for value communication is easily implemented in Maude:

crl [com] :

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 131

WHNF unblocking:

(S, 〈p, H + {x
A
�→ W , θ

B
�→ Ex

B
}〉)

wUnbl
−→ (S, 〈p, H + {x

A
�→ W , θ

A
�→ Ex

B
}〉)

WHNF deactivation:

(S, 〈p, H + {θ
A
�→ W }〉)

deact
−→ (S, 〈p, H + {θ

I
�→ W }〉)

blocking process creation:

(S, 〈p, H + {θ
IA
�→ x#y}〉)

bpc
−→ (S, 〈p, H + {θ

B
�→ x#y}〉)

demanding process creation:

(S, 〈p, H + {θ
B
�→ x1#x2}〉)

pcd
−→ (S, 〈p, H + {θ

B
�→ x1#x2, y

A
�→ E}〉)

if y
I
�→ E ∈ nf(x, H)

demanding communication:

(S, 〈p, H + {c
I
�→ W }〉)

vComd
−→ (S, 〈p, H + {c

I
�→ W , x

A
�→ E}〉)

if x
I
�→ E ∈ nf(W , H)

Fig. 6. Rules for scheduling

< p, Hp + ch |- T -> W, N, M > < c, Hq + Theta |- B -> ch, N’, M’ >

=> < p, Hp, N, M >

< c, Hq + H’ + Theta |- A -> (msubs(W’,VVL)),N’,N2 >

if nf(W, Hp) = none /\

< H’,VVL,N1 > := renH(nh(W, Hp),c,M’) /\

< W’,N2 > := renL(W,c,N’) .

When communicating a value it is mandatory to copy —from the producer’s

heap to the consumer’s heap— all the bindings needed for the evaluation of the

dependent variables in the value. This copy can only take place if the value does

not depend on pending communications.

4.5.5 Scheduling

Once all the enabled process creations and communications have been done, the

following tasks have to be achieved:

• Unblocking bindings depending on a variable bound to a whnf value meanwhile

(wUnbl).

• Deactivating bindings to values in whnf (deact).

• Blocking process creations that could not be executed (bpc).

• Demanding bindings needed for pending process creations and/or communica-

tions (pcd and vComd).

The corresponding rules are given in Figure 6 and they are easily readable in

the Maude implementation:

crl [wUnbl] : < p, H + X |- A -> W + Theta |- B -> E, N, M >

=> < p, H + X |- A -> W + Theta |- A -> E, N, M >

if X = blockedOn(E) .

rl [deact] : < p, H + Theta |- A -> W, N, M >

=> < p, H + Theta |- I -> W, N, M > .

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137132

crl [bpc] : < p, H + Theta |- T -> X # Y, N, M >

=> < p, H + Theta |- B -> X # Y, N, M >

if T =/= B .

crl [pcd] : < p, H + Theta |- B -> X # Y, N, M >

=> < p, H + Theta |- B -> X # Y + Z |- A -> E, N, M >

if Z |- I -> E + H’ := nf(X, H).

crl [vComd] : < p, H + ch |- I -> W, N, M >

=> < p, H + ch |- I -> W + X |- A -> E, N, M >

if X |- I -> E + H’ := nf(W, H) .

Their iteration and sequential composition produce a new global rule
unbl
=⇒ =

wUnbl
=⇒ ;

deact
=⇒ ;

bpc
=⇒ ;

pcd
=⇒ ;

vComd
=⇒ that is combined with the other two rules explained

before to obtain the global transition
sys
=⇒ =

comm
=⇒ ;

pc
=⇒ ;

unbl
=⇒. The following Maude

strategies define both relations:

sop =unbl=> .

seq =unbl=> = =wUnbl=> ; =deact=> ; =bpc=> ; =pcd=> ; =vComd=> .

sop =sys=> .

seq =sys=> = =com=> ; =pc=> ; =unbl=> .

4.5.6 Transition system step

Finally, each transition step of the system is defined as =⇒ =
par
=⇒ ;

sys
=⇒ . In Maude,

the following strategy allows to compute a transition step. It will be applied to

the whole system S that is being evolved, and first it applies strategy =par=> by

passing as argument the set of evolvable threads returned by ET (S).

sop ==> .

seq ==> = (matchrew S:System by S:System using =par=>(ET(S:System))

) ; =sys=> .

4.6 Speculative parallelism

In any concrete implementation the evaluation of an Eden program may give rise

to different computations. The exact amount of speculative parallelism depends

on the number of available processors, the scheduler decisions and the speed of

basic instructions. Hence, the execution of a program may range from reducing the

speculation to the minimum —only what is effectively demanded is computed—

to expanding it to the maximum —every speculative computation is carried out.

While the former would be equivalent to executing the program on a single processor

with the scheduler giving priority to the demand originated by the main thread, the

latter would correspond to having an unlimited set of processors for evaluating the

output of every generated process. It is also possible to reflect in the semantics the

distribution of a limited number of processors among the active threads following

different rules, for instance: randomly among the threads, or fairly distributing the

processors among the threads, or even giving priority to the demands of the main

thread and distributing the rest of the processors among the other threads.

Once again, the facilities and modularity of Maude allow us to produce an imple-

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 133

mentation where to experiment different alternatives by selecting the appropriate

definition of the functions nf and ET. These functions can be defined in different

ways, thus obtaining different semantics for Eden. In the present implementation we

have put each definition in a different Maude module. By instantiating the module

defining the semantics rules with a module with a concrete definition of nf and a

module with a concrete definition of ET, we obtain a complete specification of Eden.

5 Computation measures

In this section we show how our framework can be extended in order to perform

measurements over the computations, such as work done, degree of parallelism,

amount of communications, and so on. Modularity, particularly the separation

between rules and strategies, is again an useful instrument because the necessary

changes do not imply to modify the already implemented semantic rules.

First of all, the term being rewritten is extended with the actual values of the

measures. One possible way to do that is by means of a set of attributes together

with their values. One of these attributes contains the Eden system (Sys), that will

be rewritten by the semantics rules shown in the previous sections. Here we show

some examples of attributes.

sorts Attr AttrSet .

subsorts Attr < AttrSet .

op nilAS : -> AttrSet .

op __ : AttrSet AttrSet -> AttrSet [assoc comm id: nilAS] .

op Sys : System -> Attr .

op Work : Nat -> Attr . --- Number of evolved active threads

op NumProc : Nat -> Attr . --- Number of processes

op MaxPar : Nat -> Attr . --- Maximum thread parallelism

op AvPar : Nat -> Attr . --- Average thread parallelism

op AvProcPar : Nat -> Attr . --- Average process parallelism

Then, rewrite rules have to be defined to describe the modification of these

measures. For example, the following rule addPC increments by one the number of

processes, and the rule addET updates the total work that has been done as well

as the maximal thread parallelism. These updates are determined by the variable

CardET that will be instantiated by a strategy.

rl [addPC] : NumProc(N) => NumProc(N + 1) .

rl [addET] : MaxPar(Max) Work(W) =>

MaxPar(max(Max, CardET)) Work(W + CardET) .

Finally, we need to modify the strategies in order to apply these rules together

with the semantics rules. We show below two of these new modified strategies.

Strategy =pc=> now applies rule addPC after applying rule pc (process creation).

And strategy ==> updates the values of measures MaxPar and Work using the number

of evolvable threads computed by expression size(ET(S:System)).

seq =pc=> = (pc ; addPC) ! .

seq ==> = (xmatchrew Sys(S:System) MaxPar(Max:Nat) Work(W:Nat)

by S:System using =par=>(ET(S:System)) ,

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137134

MaxPar(Max:Nat) Work(W:Nat) using

addET[CardET <- size(ET(S:System))]

) ; =sys=> .

We consider once again the example of Section 3. We have instantiated the

semantics with two different definitions of function ET corresponding to the minimal

semantics (the final configuration is the first one where the main variable becomes

inactive), and the maximal semantics (the execution continues until there is no

active thread in the system). The results are shown in the following table.

Minimal Maximal

Execution time/global steps 12 7

Total work done 12 10

Average thread parallelism 1 1.43

Maximal thread parallelism 1 3

Average process parallelism 1.92 1.875

Number of communications 2 2

Speed 1.71

Notice that the total work done in the minimal semantics is greater than in

the maximal one. This apparent contradiction is due to the fact that for the total

work done we count the number of threads that have been activated. Consider the

following situation: In the minimal semantics a variable x demands a communication

value, but this value has not been evaluated yet, so that the thread corresponding

to x becomes blocked. When the value is finally obtained, x is reactived, so that

the binding for x has been active twice. By contrast, in the maximal semantics the

needed value is evaluated previously; therefore, the thread that evaluates x gets the

value and becomes deactivaded in only one step. Consequently, in this particular

case, the work done (number of active threads that have evolved) is greater for the

minimal semantics.

The next step in our project will consist in studing representative examples

that exploit the differences between the semantics, and consider other alternative

definitions of function ET; thus, obtaining conclusions of the measurements.

6 Conclusions and future work

The conjugation of Eden operational semantics and Maude has proved to be fruitful

because the characteristics of the latter meet Eden semantics implementation needs

very faithfully. For instance, Maude rewrite rules mechanism has been an excellent

tool for implementing the reduction steps in Eden semantics.

Furthermore, Maude modularity has helped to implement different language

design decisions, or the scheduler options, which depend on the threads that are

allowed to evolve at each step. We have been able to implement a prototype tool

where the user can play with different parameters of the semantics.

Moreover, Maude high level of abstraction has allowed us to obtain an imple-

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 135

mentation of the rules very similar to the operational rules. Consequently, the code

is exceptionally readable, in fact, its reading is almost equal to reading the original

semantics. Maude not only has been useful in the semantic aspects, but also at

the syntactical level: thanks to Maude operators we have defined the syntax in a

very direct way. Besides, the existence of subsorts has facilitated the expression

classification into variables, weak head normal forms, and so on.

Once this implementation is stable, this versatile interpreter is to be used for

analyzing computations obtained by using different language design options. These

analysis will be based on the measures mentioned above and on the computations

themselves. The comparisons will focus on the efficiency, the duplication of work,

the amount of speculation, the termination of computations, etc. Afterwards, the

language will be extended with other features of Eden such as communication via

streams, and nondeterminism.

Our examples have been executed using a prototype interpreter of the strategy

language implemented at the Maude metalevel [13]. Due to the inefficiency of this

interpreter, by now we have only been able to test our tool with small examples.

Currently a direct implementation of the strategy language is being developed at

the C++ level, at which the Maude system itself is implemented. This will make

the strategy language a stable new feature of Maude, thus allowing a more efficient

execution. Obviously, this new implementation will allow us to explore new more

complex and interesting examples.

References

[1] C. Baker-Finch, D. King, and P. Trinder. An operational semantics for parallel lazy evaluation. In
ACM-SIGPLAN International Conference on Functional Programming (ICFP’00), pp. 162–173, 2000.

[2] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational
logic. Theoretical Computer Science, 236:35–132, 2000.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude Manual
(Version 2.2), 2005. http://maude.cs.uiuc.edu/manual .

[4] Glasgow Haskell Compiler.
http://www.haskell.org/ghc .

[5] M. Hidalgo-Herrero. Semánticas formales para un lenguaje funcional paralelo. PhD thesis, Universidad
Complutense de Madrid, 2004.

[6] M. Hidalgo-Herrero and Y. Ortega-Mallén. An operational semantics for the parallel language Eden.
Parallel Processing Letters, 12(2):211–228, 2002.

[7] M. Hidalgo-Herrero, A. Verdejo, and Y. Ortega-Mallén. Looking for Eden through Maude and its
strategies. Web page http://maude.sip.ucm.es/eden , 2006.

[8] U. Klusik, Y. Ortega-Mallén, and R. Peña. Implementing Eden - or: Dreams become reality. In Selected
Papers 10th Int. Workshop on Implementation of Functional Languages (IFL’98), LNCS 1595, pp.
103–119. Springer, 1999.

[9] J. Launchbury. A natural semantics for lazy evaluation. In ACM Symposium on Principles of
Programming Languages, POPL’93, pp. 144–154. ACM Press, 1993.

[10] R. Loogen. Research Directions in Parallel Functional Programming. In K. Hammond and G.
Michaelson, eds., Programming Language Constructs, pp. 63–92. Springer, 1999.

[11] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel functional programming in Eden. Journal
of Functional Programming, 15(3):431–445, 2005.

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137136

http://maude.cs.uiuc.edu/manual
http://www.haskell.org/ghc
http://maude.sip.ucm.es/eden

[12] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. In D. M. Gabbay
and F. Guenthner, eds., Handbook of Philosophical Logic, Second Edition, Volume 9, pp. 1–87. Kluwer,
2002.

[13] N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. In N. Mart́ı-
Oliet, ed., Proc. Fifth Int. Workshop on Rewriting Logic and its Applications, WRLA 2004, ENTCS
117, pp. 417–441. Elsevier, 2004.

[14] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96(1):73–155, 1992.

[15] S. Peyton Jones. Haskell 98 language and libraries: the Revised Report. Cambridge University Press,
2003.

[16] F. Rosa-Velardo, C. Segura, and A. Verdejo. Typed mobile ambients in Maude. In H. Cirstea and
N. Mart́ı-Oliet, eds., Proc. 6th Int. Workshop on Rule-Based Programming, RULE 2005, ENTCS 147,
pp. 135–161. Elsevier, 2006.

[17] F. Rubio. Programación funcional paralela eficiente en Eden. PhD thesis, Universidad Complutense
de Madrid, 2001.

[18] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In F. Gadducci and U. Montanari,
eds., Proc. Fourth Int. Workshop on Rewriting Logic and its Applications, WRLA 2002, ENTCS 71,
pp. 239–257. Elsevier, 2002.

M. Hidalgo-Herrero et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 119–137 137

	Introduction
	Visiting Maude
	A quick excursion to Eden
	Representation in Maude

	Operational semantics
	A two-level transition system
	Representing the transition system in Maude
	Local process evolution
	Local parallelism
	Global system evolution
	Speculative parallelism

	Computation measures
	Conclusions and future work
	References

