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a b s t r a c t

Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird
flocking, which has been steadily gaining attention from the research community because of its high con-
vergence speed. On the other hand, in the face of increasing complexity and dimensionality of today’s
application coupled with its tendency of premature convergence due to the high convergence speeds,
there is a need to improve the efficiency and effectiveness of MOPSO. In this paper a competitive and
cooperative co-evolutionary approach is adapted for multi-objective particle swarm optimization algo-
rithm design, which appears to have considerable potential for solving complex optimization problems
by explicitly modeling the co-evolution of competing and cooperating species. The competitive and coop-
erative co-evolution model helps to produce the reasonable problem decompositions by exploiting any
correlation, interdependency between components of the problem. The proposed competitive and coop-
erative co-evolutionary multi-objective particle swarm optimization algorithm (CCPSO) is validated
through comparisons with existing state-of-the-art multi-objective algorithms using established bench-
marks and metrics. Simulation results demonstrated that CCPSO shows competitive, if not better, perfor-
mance as compared to the other algorithms.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Many real world problems involves multiple conflicting objec-
tives and various stochastic search techniques [24–26] for multi-
objective (MO) optimization are gaining increasing attention from
researchers. Particle swarm optimization (PSO) [23] is a class of
stochastic optimization technique that is inspired by the behavior
of bird flocks. PSO has been recognized to be suitable for MO prob-
lems and it has demonstrated higher convergence speeds as com-
pared to canonical MO evolutionary algorithms (MOEA) [16,17,33].
Although multi-objective PSO (MOPSO) has been shown to be
successful in various fields, researchers are facing the increasing
challenge of problem complexity in today’s applications. The com-
putational cost increases with the size and complexity of the MO
problem and the large number of function evaluations involved
in the optimization process may be cost prohibitive. The necessity
to improve MOPSO’s efficacy and efficiency becomes more acute
especially in high-dimensional problems.

Several studies [21,31] have shown that the introduction of eco-
logical models and co-evolutionary architectures are effective
methods to improve the efficacy of canonical genetic algorithm.
Co-evolutionary techniques can overcome the exponential increase
ll rights reserved.
in difficulty by segregating the search space into smaller subspac-
es, and then conducting the overall optimization process over
smaller regions. The co-evolutionary paradigm, inspired by the
reciprocal evolutionary change driven by the cooperative [20] or
competitive interaction [22] between different species, has been
extended to MO evolutionary optimization successfully
[1,9,10,14,18,27]. In a more recent work, a competitive–coopera-
tive co-evolutionary paradigm which mimics the interplay of com-
petition and cooperation among different species in nature is
proposed by Goh and Tan [7]. The underlying idea behind the com-
petitive–cooperative co-evolution framework is to allow the
decomposition process of the optimization problem to adapt and
emerge rather than being fixed at the start of the evolutionary
process. The authors demonstrated the new co-evolutionary model
can fulfill the MO optimization goals of attaining a good and
diverse solution set with enhanced effectiveness and efficiency.

Despite the progress made in multi-objective evolutionary
co-evolutionary optimization, there have not been any genuine
attempts to extend it into MOPSO. The closest attempt is a cooper-
ative co-evolutionary PSO for single-objective (SO) optimization
proposed by van den Bergh and Engelbrecht [30]. Inspired by the
competitive–cooperative co-evolution paradigm that exploits the
complementary features of both competitive and cooperative
co-evolutionary models, this paper presents a competitive–
cooperative co-evolutionary MOPSO (CCPSO). The proposed CCPSO
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incorporates various features such as archiving, Pareto-based rank-
ing, and a tournament-based competition strategy.

The reminder of the paper is organized as such: in Section 2, the
related background on multi-objective optimization, PSO, and
competitive–cooperative co-evolutionary model are reviewed.
The proposed CCPSO is described in Section 3. In Section 4, the per-
formance of the proposed algorithm is measured against other
leading MOEAs on some established test functions in the field of
multi-objective optimization. In addition, a sensitivity analysis of
parameters is given. Conclusions are drawn in Section 5.

2. Background information

This section provides the necessary background to appreciate
the work presented in this paper. A brief introduction of multi-
objective optimization is given in Section 2.1 while the basic PSO
algorithm is described in Section 2.2. An overview of the competi-
tive–cooperative co-evolutionary model is presented in Section
2.3.

2.1. Multi-objective optimization

Many real-world applications involve complex optimization
problem with various competing specifications and constraints
[34–36]. Without any loss of generality, we consider a minimiza-
tion problem and it tends to find a parameter set ~x for

min~f ð~xÞ; ~x 2 RD; ð1Þ

where ~x ¼ fx1; x2; . . . ; xDg is a vector with D decision variables and
~f ¼ ff1; f2; . . . ; fMg are the M objectives to be minimized.

In contrast to single-objective optimization, the solution to MO
optimization problem exists in the form of alternate tradeoffs
known as Pareto optimal set. These solutions are also termed non-
inferior, admissible or efficient solutions. The corresponding objec-
tive vectors of these solutions are termed nondominated and each
objective component of any nondominated solution in the Pareto
optimal set can only be improved by degrading at least one of its
other objective components. A vector ~f a is said to dominate an-
other vector~f b, denoted as
~f a �~f b; iff f a;i 6 fb;i 8i ¼ f1;2; . . . ;Mg and

9j 2 f1;2; . . . ;Mg where f a;j < fb;j ð2Þ

and the Pareto-optimal front is given as

PF� ¼ ~f �j 9=~f �~f �;~f 2 RM
n o

: ð3Þ
2.2. Particle swarm optimization

The standard particle swarm optimizer maintains a swarm of
particles that represent the potential solutions to the problem on
hand. Each particle ~pi ¼ fxi;1; xi;1; . . . ; xi;Dg embeds the relevant
information regarding the D decision variables fxj; j ¼ 1;2; . . . ;Dg,
and is associated with a fitness that provides an indication of its
performance in the objective space ~f 2 RM . Its equivalence in ~f is
denoted by ~f i ¼ ffi;1; fi;1; . . . ; fi;Mg, where ffk; k ¼ 1;2; . . . ;Mg are
the objectives to be minimized.

In essence, the trajectory of each particle is updated according
to its own flying experience as well as to that of the best particle
in the swarm. The basic PSO algorithm can be described as

vkþ1
i;d ¼ w � vk

i;d þ c1 � rk
1

_ðpk
i;d � xk

i;dÞ þ c2 � rk
2 � pk

g;d � xk
i;d

� �
; ð4Þ

xkþ1
i;d ¼ xk

i;d þ vkþ1
i;d ; ð5Þ

where vk
i;d is the dth dimension velocity of particle i in cycle k; xk

i;d is
the dth dimension position of particle i in cycle k; pk

i;d is the dth
dimension of personal best (pbest) of particle i in cycle k; pk
g;d is

the d dimension of the global-best (gbest) in cycle k; w is the inertia
weight; c1 is the cognitive weight and c2 is the social weight; r1 and
r2 are two random values uniformly distributed in the range of [0,1].

2.3. Competitive–cooperative co-evolution

The canonical co-evolutionary paradigm can be broadly classi-
fied into two main categories namely, competitive co-evolution
and cooperative co-evolution. For the former, the various subpop-
ulations will always fight to gain an advantage over the others.
However, for the latter; subpopulations will exchange information
within each other during the evolutionary process. Regardless of
the different approaches, successful implementation of co-evolu-
tion requires the explicit consideration of several design issues
[21] such as problem decomposition, parameter interactions and
credit assignment, which are inherently problem dependent.

As mentioned in the introduction, the competitive–cooperative
model [7] incorporates both elements of cooperation and competi-
tion which allows problem decomposition to emerge along the
evolutionary process. This model involves two tightly-coupled
co-evolutionary processes. As in the case of conventional coopera-
tive co-evolutionary algorithms, individuals from the different
species collaborate to solve the problem at hand during the coop-
erative process. Each species evolves in isolation and there is no
restriction on the form of representation or the underlying optimi-
zation algorithm. On the other hand, the cooperative species will
enter into competition with other species for the right to represent
the various components of the problem.

The interaction frequency between the cooperative and com-
petitive process can be determined by the designer according to
the problem requirements. For the ensuing discussions, the MO
problem is decomposed along the decision variables. Also, each
decision variable may be assigned to a number of species popula-
tions and a species population may be optimizing more than one
decision variable.

2.3.1. Credit assignment
Credit assignment for the competitive–cooperative process is

performed at the species and individual level, respectively. In the
cooperative process, the different objectives of the MO problem
are evaluated by assembling each individual along with the repre-
sentatives of the other species to form a valid solution. After which,
appropriate fitness assignment such as Pareto ranking can be com-
puted. In the competitive process, the fitness of particular species
is computed by estimating how well it performs in a particular role
relative to its competitors in the cooperation with other species to
produce good solutions. For example, the species selected out of D
competing species to represent a particular variable is given a
higher probability of representing it in the later cycles, while the
losing species of the competition is penalized and given a lower
probability.

2.3.2. Problem decomposition and component interdependency
The difficulty with problem decomposition is that information

regarding the number or role of components is usually not known
a priori, and many problems exhibit complex interdependencies.
The competitive process in the competitive–cooperative model
will trigger a potential arms race among the various species to im-
prove their contribution to overall fitness of the ecosystem. The
benefits of this competition also include the discovery of interde-
pendencies between the components as the species competition
provides an environment in which interdependent components
end up within the same species. The reasonable problem decompo-
sitions emerge due to co-evolutionary pressure rather than being
specified by the user.
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2.3.3. Diversity
The competitive–cooperation co-evolutionary model provides a

means of exploiting the complementary diversity preservation
mechanisms of both competitive and cooperative models. In the
cooperative model, the evolution of isolated species tends to gen-
erate higher diversity across the different species. This property
does not necessarily extend to within each species. Species diver-
sity is also driven by the necessity to deal with the changing com-
petition posed by the other species in the competitive model.
Furthermore, the competitive process allows a more diversified
search as the optimization of each component is no longer re-
stricted to one species. The competing species provides another
round of optimization for each component, which increases the ex-
tent of the search while maintaining low computational
requirements.

3. Competitive–cooperative co-evolution for MOPSO

This section starts with the description of the cooperative co-
evolutionary mechanism and the competitive co-evolutionary
mechanism in Sections 3.1 and 3.2, respectively. The selection of
gbest to guide the optimization process is presented in Section
3.3 while the archive updating process is described in Section
3.4. The algorithmic flowchart of CCPSO is presented in Section 3.5.

3.1. Cooperative co-evolutionary mechanism

The cooperative co-evolutionary mechanism employed in this
paper is illustrated in Fig. 1. Similar to the cooperative co-evolu-
tionary PSO proposed by van den Bergh and Engelbrecht [30], the
problem is decomposed in the search space and the decision vari-
ables are evolved by different species, or called subswarms in the
following discussions. The main difference is that the assignment
of decision variables to different subswarms is adapted by the
Subs
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Fig. 1. Illustration of the coopera
competitive mechanism, which will be described in the next
section.

At the start of the optimization process, D subswarms are ran-
domly initialized and the ith variable is assigned to the ith sub-
swarm. In order to evaluate a particle in a subswarm, the particle
under evaluation is combined with the representative of every
other species to form a complete solution. In this paper, the best
particle in the subswarm is defined as the representative of the
subswarm. The archive is updated after each particle evaluation.
The archive updating process will be described in a later section.

The subswarms are evaluated in an iterative manner. Before
proceeding to the evaluation of the next subswarm, the represen-
tative of previous subswarm will be updated. This updating pro-
cess is based on a partial order such that Pareto ranks will be
considered first followed by niche count in order to break the tie
of ranks. The Pareto rank is given by

rankðiÞ ¼ 1þ ni; ð6Þ

where ni is the number of archive members that dominates the par-
ticle i. For any two particles, the particle with lower rank is selected.
In the case of a tie in rank, the particle with lower niche count is se-
lected. The rationale of selecting a nondominated representative
with the lowest niche count is to promote the diversity of the
solutions.

3.2. Competitive co-evolutionary mechanism

Ideally, all particles from the competing subswarms should
compete with all other particles from the other subswarms in or-
der to determine the extent of its suitability. However, such an
exhaustive approach requires extensive computational effort and
it is practically infeasible. In this paper, each subswarm will be as-
signed a probability of representing a particular variable and only
two subswarms, the current subswarm and competitor subswarm,
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will compete for the right to represent any variable at any one
time. This selection probability is initialized as 1=D so that all
subswarms have equal probability of being selected. This probabil-
ity will be updated depending on outcome of the competition
process.

The competitive co-evolutionary mechanism employed in this
paper is illustrated in Fig. 2. As mentioned in the previous section,
in the first cycle, the ith variable is assigned to the ith subswarm. In
the subsequent cycles, a competing subswarm is selected using
roulette wheel selection based on the selection probability to com-
pete against the current species for the right to represent the, say,
jth decision variable. During the competition process, the represen-
tatives of the current and competitor subswarms will combine
with representatives of the other subswarms to form two complete
solutions. The subswarm providing the better solution is the win-
ner and will represent the jth decision variable in the next round of
cooperation. The update of the probability of subswarm i repre-
senting variable j is given by

Pi;jðkÞ ¼ Pi;jðk� 1Þ � 1
D

a; ð7Þ

where a is the learning rate. Therefore, the selection probability of a
subswarm will increase as it becomes increasingly adapted to the
decision variable. Vice versa, the probability of an unsuitable sub-
swarm will be reduced. Note that it is possible for a subswarm to
represent more than one decision variable.

3.3. Selection of global-best

While a single gbest exist in SO optimization, the gbest for MO
optimization exist in the form of a set of nondominated solutions
which inevitably leads to the issue of global-best selection. This pa-
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Fig. 2. Illustration of the competi
per adopts the approach presented in [16] for the selection of
gbest. In MOPSO, the gbest plays a very important role in guiding
the entire swarm towards the global Pareto front, i.e. the selection
of appropriate gbest is crucial for the search of a diverse and uni-
formly distributed solution set.

Each particle in the subswarm will be assigned a nondominated
solution from the archive as gbest. Assignment of gbest is per-
formed through independent binary tournament selection of non-
dominated solutions from the archive for each particle in every
cycle. Note that the nondominated solution is a complete solution
with all D decision variable. Since each particle will only represent
a component of the problem in CCPSO, only the associated decision
variables will be represented in the selected gbest. Each particle is
likely to be assigned different archived solution as the gbest be-
cause of the stochastic nature of the tournament selection. In order
to promote diversity as well as to encourage exploration into the
least populated areas of the search space, the selection criterion
is based on niche count. In the event of a tie, preference will be gi-
ven to solutions lying at the extreme ends of an arbitrarily selected
objective.

3.4. Archiving process

The algorithm applies a fixed-size archive to store nondominat-
ed individuals along the evolution. The size of archive can be ad-
justed according to the desired number of solutions to be
distributed on the tradeoffs in the objective space. A complete can-
didate solution formed by the subswarms will be added to the ar-
chive if it is not dominated by any archived solutions. Likewise, any
archive members dominated by this candidate solution will be re-
moved. When the predetermined archive size is reached, a recur-
rent truncation process [12] based on niche count is used to
eliminate the most crowded archive member.
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3.5. Implementation

The flowchart of the proposed algorithm is shown in Fig. 3. The
optimization process starts with the initialization of the different
subswarms. After that, the cooperation mechanism described in
Section 3.1 is conducted to evaluate the particles in each sub-
swarm. The archive is then updated based on the evaluated solu-
tions. The new set of nondominated solutions in the archive is
used as the reference for the calculation of the rank and niche
count for each particle. The pbest will be updated if the current
solution dominates the previous pbest. In the case in which neither
solution dominates each other, the current solution will be given a
50% chance to be the new personal best. The position of the parti-
cles are updated and the turbulence operator is applied. As shown
in Fig. 3, the competitive process will be activated and the proba-
bility of the subswarms in representing various variables are
updated.

4. Experimental setup and results

This section starts with a description of various performance
metrics and MO test functions in Sections 4.1 and 4.2, respectively.
Sensitivity analysis of various parameter settings in the CCPSO is
conducted in Section 4.3. Subsequently, a comparative study be-
tween CCPSO and various MOEAs that are representatives of the
state-of-the-arts will be conducted in Section 4.4.

4.1. MO test functions

Six benchmark problems, FON, KUR, ZDT4, ZDT6, DTLZ2 and
DTLZ3, are used to examine and compare the performance of
CCPSO and other state-of-the-art MOEAs. These test functions have
different problem characteristics [3], such as multi-modality, con-
vexity, discontinuity and non-uniformity, which may challenge the
Initialize D subswarms
for the D variables

Stopping criterion satisfied?

Evaluate particles in 
subswarm i

Assign Pareto ranking and
niche count

All subswarms
evaluated?

Update of pBest and
archive

Output solutions

Yes

No

No

Yes

Update of gBest based on
archived solutions

Cooperative
process

Fig. 3. Algorithmic
MOEA’s ability to converge and maintain population diversity. It
has been shown that the performances of MOEAs often do not scale
well with respect to the number of objectives [8,11]. Therefore,
DTLZ2 and DTLZ3 are formulated here as a five-objective optimiza-
tion problem. The definition of these test functions is summarized
in Table 1.

4.2. Performance metrics

In general, the performance metrics used in the evaluation of
MOEA performances must provide an indication of, (1) the distance
between the nondominated set produced by the algorithm and the
Pareto optimal set of the problem, (2) the distribution of the solu-
tions along the Pareto-optimal front, and (3) the extent covered by
the discovered solutions. In this paper, three performance metrics
are adopted.

4.2.1. Proximity indicator
The metric of generational distance (GD) gives a good indication

of the gap between the PF� and the evolved PF. Mathematically, the
metric is a function of individual distance given as,

GD ¼ 1
nPF
� nPF

XnPF

i¼1

d2
i

 !1
2

ð8Þ

where nPF ¼ jPFj; di is the Euclidean distance (in objective space)
between the ith member of PF and the nearest member of PF�. A
low value of GD is desirable, which reflects a small deviation be-
tween the evolved and the true Pareto front.

4.2.2. Diversity indicator
A modified maximum spread (MS0)[6] is applied to measure

how well the PF� is covered by the evolved PF. Specifically, the
modified metric takes into account the proximity to PF�, e.g., a
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Table 1
Definition of static test functions.

Test Definition

1 FON
f1ðx1; . . . ; x8Þ ¼ 1� exp �

P8
i¼1 xi � 1ffiffi

8
p

� �2
� �

,

f2ðx1; . . . ; x8Þ ¼ 1þ exp �
P8

i¼1 xi � 1ffiffi
8
p

� �2
� �

,

where �2 6 xi < 2; 8i ¼ 1;2; . . . ;8

2 KUR f1ðx2; x3Þ ¼
P2

i¼1 �10 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ x2
iþ1

q� �h i
,

f1ðx2; x3Þ ¼
P3

i¼1 jxij0:8 þ 5 � sinðx3
i Þ

h i
,

xi 2 ½�5;5�

3 ZDT4 f1ðx1Þ ¼ x1,
f2ðx2; . . . ; xmÞ ¼ g � h,
gðx2; . . . ; xmÞ ¼ 1þ 10ðm� 1Þ þ

Pm
i¼2 x2

i � 10 cosð4pxiÞ
	 


,

hðf1; gÞ ¼ 1�
ffiffiffi
f1
g

q
,

where m ¼ 10; x1 2 ½0;1�; �1 6 xi < 1; 8i ¼ 2; . . . ;10

4 ZDT6 f1ðx1Þ ¼ 1� expð�4x1Þ � sin6ð6px1Þ,
f2ðx2; . . . ; xmÞ ¼ g � h,

gðx2; . . . ; xmÞ ¼ 1þ 9 �
Pm

i¼2
xi

m�1

� �0:25

,

hðf1; gÞ ¼ 1� f1
g

� �2
,

where m ¼ 10; xi 2 ½0;1�

5 DTLZ2 f1ð~xÞ ¼ ð1þ gð~xMÞÞ � cosð0:5px1Þ � � � cosð0:5pxM�1Þ,
f2ð~xÞ ¼ ð1þ gð~xMÞÞ � cosð0:5px1Þ � � � sinð0:5pxM�1Þ,
..
.

fMð~xÞ ¼ ð1þ gð~xMÞÞ � sinð0:5px1Þ,
gð~xMÞ ¼

P
xi2~xM
ðxi � 0:5Þ2,

where M ¼ 5; ~xM ¼ fxM ; � � � ; xMþ9g; xi 2 ½0;1�

6 DTLZ3 f1ð~xÞ ¼ ð1þ gð~xMÞÞ � cosð0:5px1Þ � � � cosð0:5pxM�1Þ,
f2ð~xÞ ¼ ð1þ gð~xMÞÞ � cosð0:5px1Þ � � � sinð0:5pxM�1Þ,
..
.

fMð~xÞ ¼ ð1þ gð~xMÞÞ � sinð0:5px1Þ,
gð~xMÞ ¼ 100fj~xM þ

P
xi2~xM
ðxi � 0:5Þ2 � cosð20pðxi � 0:5ÞÞg,

where M ¼ 5; ~xM ¼ fxM ; . . . ; xMþ9g; xi 2 ½0;1�
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higher value of MS0 reflects that a larger area of the PF� is covered
by the PF. The metric is given as,

MS0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

i¼1

min PFi; PF�i
� �

�max PFi; PF�i
� �

PF�i � PF�i

" #2
vuut ð9Þ

where PFi and PFi is the maximum and minimum of the ith objec-
tive in PF, respectively; PF�i and PF�i is the maximum and minimum
of the ith objective in PF�, respectively.

4.2.3. Distribution indicator
The metric of spacing [19] shows how evenly the nondominated

solutions are distributed along the discovered Pareto front. It is gi-
ven as,

S ¼ 1
�d0
� 1

nPF
�
XnPF

i¼1

ðd0i � �d0Þ2
 !1

2

; ð10Þ

�d0 ¼ 1
nPF

XnPF

i¼1

d0i;

where nPF ¼ jPFj; d0i is the Euclidean distance (in objective space)
between the ith member and its nearest member in PF.

4.3. Sensitivity analysis

In this section, the impact of various parameter settings of
CCPSO is examined. A number of simulations are performed with
different settings of w ¼ f0:2;0:4;0:6g; Ssubpop ¼ f5;10;20;50g,
and Sarc ¼ f100;150;200;250g. An additional setup involving an
adaptive inertia weight that reduces from 0.9 to 0.4 is also applied
and compared against the static settings. For each experiment only
one parameter was changed while maintaining all other parame-
ters constant, and the box-plots show results of parameters being
varied in increasing order. The parameters are changed one by one
in order to tell algorithm designers the individual effects of each
parameter. Such information will be a good starting point for
designers to fine-tune their program to real world problems.

4.3.1. Inertial weight
Fig. 4 shows the performance of CCPSO over different w set-

tings. The inertia weight, which helps maintain the balance be-
tween exploration and exploitation, is varied among 0.2, 0.4, 0.6
and an adaptive weight that reduces from 0.9 to 0.4. Note that a
smaller w represents a higher tendency to adopt changes brought
about by changes due to pbest and gbest. It can be observed that
the inertia has a greater impact on MS as compared to S and GD.
Interestingly, a higher w and the adaptive inertia scheme provide
a better spread of solutions for both problems. On the other hand,
a smaller w tend to provide better convergence, probably due to a
higher tendency to adopt new changes. It should also be noted that
CCPSO is capable of performing consistently and effectively within
a large range of w.

4.3.2. Subswarm size
Fig. 5 shows the performance of CCPSO over different settings

Ssubpop ¼ f5;10;20;50g. The population size of the subswarm was
varied while maintaining the total number of evaluations. From
the box-plots, it is apparent that smaller species sizes give rise to
better convergence to the true Pareto front. Nonetheless, we note
that higher values of MS denoting better diversity are achieved
at higher Ssubpop settings in the case of FON. This is because, by
maintaining a fixed number of evaluations, there is an inherent
tradeoff between the diversity provided by a larger population size
and the number of generations allowed for exploration.

4.3.3. Archive size
Fig. 6 shows the performance of CCPSO over different settings of

Sarc ¼ f100;150;200;250g. Apart from the problem of ZDT4 in
which the archive size seems to have little effect, CCPSO tends to
achieve better results in all aspects with increasing archive sizes.
This is because the restriction on the number of archive solutions
leads to two phenomena [5] which have a detrimental effect on
the search process. The first is the shrinking PF phenomenon which
results from the removal of extremal solutions and the subsequent
failure to rediscover them. In the second phenomenon, nondomi-
nated solutions in the archive are replaced by least crowded indi-
viduals. In the subsequent generations, new individuals that would
have been dominated by the removed solutions are updated into
the archive only to be replaced solutions dominating them. None-
theless, we note that an archive size of 100 is sufficient to produce
good results.

4.4. Simulation results

In this section, the proposed CCPSO is compared with evolution-
ary multi-objective optimization methods (NSGAII [4], SPEA2 [32],
IMOEA [29] and PAES [13]) that are representative of the state-of-
the-arts. Two multi-objective particle swarm optimization algo-
rithms (SMOPSO [15] and CMOPSO [2]) have also been included
to reflect an accurate measure of the algorithm against other estab-
lished PSO algorithms implemented rather than simply pitting the
CCPSO against other MOEAs, where any inherent advantages or
disadvantages that a MOPSO may have over MOEAs may skew



Fig. 4. Algorithm performance in (a) GD, (b) MS, and (c) S for FON (1st row), KUR (2nd row), ZDT4 (3rd row) and ZDT6 (4th row), with various w settings.
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the results. The parameter settings and indices of the different
algorithms are shown in Tables 2 and 3, respectively.

4.4.1. FON
FON has a nonconvex and nonlinear tradeoff curve that chal-

lenges the algorithms ability to find and maintain the entiresi
tradeoff curve uniformly. A stopping criterion of 8000 evaluations
is used for this problem. The distribution of the different perfor-
mance metrics is represented by box-plots in Fig. 7.
From the box-plots, it is clear that the PSO paradigm has clear
advantage over the various MOEAs used in the study. While SMO-
PSO, CCPSO and CMOPSO demonstrated competitive performance,
the four MOEAs exhibited a varying degree of success. In particular,
PAES and IMOEA performed inconsistently in GD and MS. It can be
observed that the PSO framework attains the best performance in
the metric of MS. Nonetheless, CCPSO and CMOPSO are competi-
tive in the aspects of convergence and distribution as evident in
Fig. 7a–b.



Fig. 5. Algorithm performance in (a) GD, (b) MS, and (c) S for FON (1st row), KUR (2nd row), ZDT4 (3rd row) and ZDT6 (4th row), with various Ssubpop settings.
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4.4.2. KUR
KUR is characterized by a tradeoff that is nonconvex and discon-

nected, i.e., it contains three distinct disconnected regions on the
final tradeoff. The decision variables corresponding to the global
tradeoff for KUR are difficult to be discovered, since they are dis-
connected in the decision variable space as well. A stopping crite-
rion of 4500 evaluations is used for this problem. The distribution
of the different performance metrics is represented by box-plots in
Fig. 8.
It should be noted that results of PAES in terms of GD is not plot-
ted in the box-plot since it is unable to converge within the allocated
number of evaluations. On the other hand, the other algorithms
faced no problems finding solutions near the true Pareto front. It is
evident from Fig. 8 that CCPSO performs better than the other algo-
rithms in the aspects of GD and S while remaining strongly compet-
itive in terms of MS. Unlike the case of FON where the PSO-based
algorithms are significantly faster than the MOEA counterparts,
SPEA2 and CCPSO demonstrated competitive convergence rates.



Fig. 6. Algorithm performance in (a) GD, (b) MS, and (c) S for FON (1st row), KUR (2nd row), ZDT4 (3rd row) and ZDT6 (4th row), with various Sarc settings.
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4.4.3. ZDT4
ZDT4 is characterized by a severe multi-modal landscape and a

stopping criterion of 10,000 evaluations is used for this problem.
The evolved Pareto fronts from all 30 simulation runs for the algo-
rithms are plotted in Fig. 9. The distribution of the different perfor-
mance metrics is represented by box-plots in Fig. 10.

ZDT4 proved to be a very difficult problem to solve, mainly due
to the high number (219) of local fronts. As observed from Figs. 9d
and 10, CCPSO is the only algorithm capable of attaining the true
Pareto front. In addition, it is clear that the poor performances of
CMOPSO and SMOPSO in the aspects of GD and MS is the conse-
quence of high convergence speed, as evident in Fig. 9 resulting
in the algorithms getting trapped in the local optimal fronts.

4.4.4. ZDT6
ZDT6 has a biased search space and non-uniformly distributed

solutions along the global tradeoff, which makes it difficult for
algorithms to evolve a well-distributed Pareto front. A stopping cri-



Table 2
Parameter setting for different algorithms.

Parameter Settings

Populations Population size 100 in NSGAII, SPEA2, SMOPSO, IMOEA, CMOPSO
Subpopulation size 10 in CCPSO
Population size 1 in PAES
Archive (or secondary population) size 100

Chromosome Binary coding; 30 bits per decision variable in IMOEA, PAES,
NSGAII and SPEA2
Real number representation in CCPSO, CMOPSO, and SMOPSO

Selection Binary tournament selection
Crossover

operator
Uniform crossover in IMOEA, NSGAII and SPEA2

Crossover rate 0.8 in IMOEA, NSGAII and SPEA2
Mutation

operator
Bit-flip mutation in IMOEA, PAES, NSGAII and SPEA2

Turbulence operator in CCPSO, CMOPSO, and SMOPSO
Mutation rate 1

L for ZDT4, ZDT6, DTLZ2 and DTLZ3 where L is the chromosome
length
1
B for FON and KUR where B is the bit size per decision variable

Turbulence
strength

0.2

Niche radius Dynamic sharing [28]

Table 3
Indices of different algorithms.

NSGAII SPEA2 SMOPSO CCPSO IMOEA CMOPSO PAES

1 2 3 4 5 6 7

Fig. 7. Algorithm performance in (a

Fig. 8. Algorithm performance in (a
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terion of 10,000 evaluations is used for this problem. The distribu-
tion of the different performance metrics is represented by box-
plots in Fig. 11.

As in the case for FON, the PSO algorithms in general outper-
formed the rest of the algorithms, managing to cover almost the
entire actual Pareto front over the thirty runs. From Fig. 11a and
b, it is apparent that NSGAII and SPEA2 are unable to reach the true
Pareto front consistently and failed to cover the entire set of opti-
mal solutions throughout the thirty runs. It can also be noted that
while PAES outperforms NSGAII and SPEA2 in the aspects of GD,
but it performs poorly in attaining a well-distributed Pareto front
as shown by the poor MS. It can also be observed that the proposed
CCPSO has a better capability to attain a near-optimal, well-distrib-
uted, and well-spread Pareto front with better result on GD, MS
and S.

4.4.5. DTLZ2
DTLZ2 is used to investigate an algorithms ability to produce

adequate pressure for searching toward the large Pareto front in
the high-dimensional objective domain. There are five objectives
to optimize for the problem of DTLZ2, and a stopping criterion of
20,000 evaluations is used. The distribution of the different perfor-
mance metrics is represented by box-plots in Fig. 12.

For DTLZ2, the PSO algorithms in general outperformed the rest
of the algorithms, managing to get the best GD over the thirty runs.
It can be noted from Fig. 12 that while NSGAII and SPEA2 performs
well in the aspects of MS and S, it performs poorly in attaining a
good GD. From Fig. 12a, it is apparent that the CCPSO scales well
for the large number of objectives of DTLZ2, while the MOEAs used
) GD, (b) MS, and (c) S for FON.

) GD, (b) MS, and (c) S for KUR.



Fig. 9. Pareto fronts generated across 30 runs by (a) NSGAII, (b) SPEA2, (c) SMOPSO, (d) CCPSO, (e) IMOEA, (f) CMOPSO, and (g) PAES for ZDT4.

Fig. 10. Algorithm performance in (a) GD, (b) MS, and (c) S for ZDT4.

Fig. 11. Algorithm performance in (a) GD, (b) MS, and (c) S for ZDT6.
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in this experiment suffer in convergence. CCPSO achieves good
convergence rate while maintaining competitive performance on
MS and S.
4.4.6. DTLZ3
DTLZ3 has high-dimensional objective space and many local

Pareto fronts. All local Pareto-optimal fronts are parallel to the glo-
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Fig. 12. Algorithm performance in (a) GD, (b) MS, and (c) S for DTLZ2.
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bal Pareto-optimal front and an algorithm can get stuck at any of
these local Pareto-optimal fronts, before converging to the global
Pareto-optimal front. A stopping criterion of 50,000 evaluations
is used for this problem. The distribution of the different perfor-
mance metrics is represented by box-plots in Fig. 13.

As shown in Fig. 13, the PSO algorithms in general outper-
formed the rest of the algorithms in GD metric. From Fig. 13a, it
can be noted that CCPSO is able to escape the local optimal traps
as reflected by the good results obtained in GD. It can also be ob-
served that, except CCPSO, other algorithms still have many solu-
tions that are located far away from the true Pareto front. CCPSO
is also able to evolve a diverse solution set as evident from
Fig. 13b. But the solutions are not evenly distributed along the glo-
bal Pareto front as shown by the large value on S. In general, the
performance of CCPSO is the best among the seven algorithms used
here on DTLZ3.

5. Conclusion

In the face of increasing complexity and dimensionality of to-
day’s application, there is a need to improve the efficiency and
effectiveness of MOPSO. Therefore, in order to improve the perfor-
mance of MOPSO, the algorithm put forward in this paper attempts
to further emulate the conflict and coexistence between coopera-
tion and competition in nature by implementing both aspects into
co-evolutionary model. This is accomplished by having species
compete amongst themselves for the right to represent more com-
ponents, and the winners cooperate to solve the whole problem.
The proposed algorithm is validated through extensive simulation
studies, which include a sensitivity study and a comparative study.
In the sensitivity analysis, the effects of different inertia weight,
subswarm size and archive size settings on CCPSO performance
are examined. We observed that CCPSO achieves better conver-
gence with smaller inertia. On the other hand, the adaptive inertia
scheme and higher inertia weights provide a more diverse Pareto
front. In the case of subswarm sizing, we observed a tradeoff be-
tween diversity provided by a larger population size and conver-
gence provided by the higher number of generations to explore.
Increasing the archive size will bring about better performance in
CCPSO. In the comparative study, CCPSO is compared against exist-
ing state-of-the-art multi-objective algorithms through the use of
established benchmarks and metrics. It is observed that the parti-
cle swarm based algorithms have faster convergence speeds as
compared to algorithms based on the evolutionary framework.
However, such high speed of convergence results in poor conver-
gence performance for PSO algorithms in ZDT4, which is character-
ized by a multi-modal landscape. The introduction of competitive–
cooperative co-evolution enables CCPSO to retain the fast conver-
gence speed of PSO while solving for near-optimal and diverse Par-
eto fronts in all test problems.
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